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The Dinitz Problem

Kind of like Sudoku where numbers are colors



Trival Cases for n x n grid

All color sets are different (e.g n2 nodes, n2 colors)

All color sets are the same and there are n colors (Latin Square)

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

Works with any arbitrary initial permutation

Can’t do it with < n colors



More colors is more difficult as one cannot start arbitrarily

1. Start with the first row being 1, 2
2. Forced to choose 3 for cell 1, 0
3. Choosing 2 or 3 for cell 1, 1 does not work

Smaller set of solutions if they even exist (I think)



Undirected Graph Definitions: G(V, E)

G(V, E) is a graph with a set of vertices/nodes (V) and edges (E)

X(G) is the chromatic number of G:
Smallest number of independent sets (set with vertices that do not share edges) that 

partition V (cover all of V)

E.g Smallest amount of colors needed to color the graph (ignore color sets for each vertex



List coloring is a mapping c: V → Uv \in VC(v) such that c(v) \in C(v) and 
for all v, v’ in E, c(v) != c(v’)

E.g Given each node has a color set, an assignment that picks from 
each node’s color set such that adjacent nodes don’t share the same 
color

Xl(G) is the list chromatic number: smallest k s.t for all color sets of size 
k over V (C(v1), …, C(vN)), there exists a list coloring

Note that Xl(G) >= X(G) since same-color set coloring is just a specific 
choice of color set. Xl(G) is the smallest k for all color sets (of size k), 
including the super messed up ones

Undirected Graph Definitions: G(V, E)



Sn is the grid with n rows/cols, squares as nodes and edges 
shared by nodes in the same row or column

Xl(Sn) = n? (Why can’t this be less than n? X(Sn) = n)

Dinitz in Graph Language



Subgraph: If A is a subset of V, GA is the subgraph formed from A and all 
the edges from G containing A

H is an induced subgraph of G if there exists A, a subset of V and H = GA

G(V, E) (i.e BOLD G) is a directed graph, edges have direction.
d+(v) is the outdegree, d-(v) is the indegree and d+(v) + d-(v) = d(v) 

K, a subset of V, is a kernel if:
i) K is independent in G (not G)
ii) for all u \notin K, there exists a v in K s.t u → v

Subgraphs, Directed Graphs notation



Why will this be useful? (Dinitz to Lemma 1 took 14 yrs, Lemma 1 to end 
took 1 yr)

- we have Sn which is undirected so to use this we’ll need to convert Sn into 
a directed graph (find a direction for the edges, an orientation)
- with “enough” colors, there exists a list coloring
after Lemma 1, we still need to
- find an orientation such that d+(v) <= n - 1 (create the directed version Sn)
- show every induced subgraph of Sn has a kernel 

Lemma 1 Proof



Backwards induction?

If |V| = 1, nothing to prove, so assume |V| > 1.

Start of loop
Choose an arbitrary color from the union of all color sets, c. Form the set of nodes with c in their respective color sets, A(c).

Induce the subgraph on A(c) from G → GA(c). By hypothesis, there exists a kernel K(c) on that subgraph. Color all the nodes in 
K(c) by c (they are independent so not adjacent). 

Create a new graph/induce a subgraph, G’, from V\K(c) with new color sets C’(v) = C(v)\{c}. 
End loop

The condition |C’(v)| >= d+(v) + 1 still holds for v in A(c)\K(c) since we deleted at least one of their old kernel neighbors and a 
single color (RHS decreases more than LHS). For v \notin A(c), their color sets stay the same and their outdegree weakly 
decreases so the condition still holds for them as well. Note that |G’| < |G|, so we’re done.

Lemma 1 Proof



We are done if:

- We find an orientation for Sn (convert Sn into the directed version Sn) that also satisfies the outdegree condition (n >= 
d+(v) + 1) AND

- we prove that every induced subgraph of Sn possesses a kernel

Note: last line of Lemma 1 is there exists a list coloring of the undirected graph.

Where are we?



G = (X ⋃ Y, E), where edges connect x and y, not x and x’ nor y and y’

Intuition: X is the set of Men and Y is the set of Women and an edge is a pairing of a man and woman

A matching is a bipartite graph where none of the edges share an end vertex. E.g a set of marriages where no bigamy (man has 
multiple wives or woman has multiple husbands).

Adding preferences...suppose each node, v (in X or Y) has an ordering their adjacent nodes, N(v) = {z1 > z2 > … > zd(v)} 

A stable matching is a matching where no 2 nodes are each better off by forming another marriage. 
I.e for all uv in E\M (a feasible match between u in X and v in Y), either uy in M and y > v in N(u) (u is matched with someone they 
prefer) or xv in M and x > u in N(v) (v is matched with someone they prefer)

Detour into Bipartite Graphs



Proof:

Set R = X and all strings for females are empty

Loop until R is empty

1. All men, u in R, propose to their current top choice (no going backwards)
2. If a girl receives more than one proposal, she chooses the top pick among the current proposals and puts him on a 

“string”
3. Men rejected with no options left die, all the other rejected men go into the reservoir R (update R)
4. Repeat

This terminates as each loop has some men go strictly forward through their list of choices. The is stable because

Suppose uv in E but uv not in M. Either:

Case 1: u never proposed to v
- he stopped before getting to v in favor of someone else (exists y in Y s.t uy in M with y > v in N(u))
Case 2: u did propose to v
- v rejected the proposal in favor of someone else (exists x in X s.t xv in M with x > v in N(v))

Stable Matching Always Exists 



Step 1: Find an orientation such that d+(i, j) <= n - 1

Step 2: For this new directed graph, show that every induced subgraph has a kernel

Setup:

Vertices are denoted i, j (row i, col j). Therefore (i, j) and (r, s) are adjacent if i = r or j = s.

Step 1:

Setup a Latin square. 
For each of the rows, a node u has an edge to v in the row if L(u) < L(v) (this sets up horizontal edges)
For each of the columns, a node u has an edge to v in the col if L(u) > L(v) (this sets up vertical edges)

Note that a given node has n - 1 other nodes in the same row and n - 1 other nodes in the same col, so 2n - 2. Because the rows 
and columns point in <, > fashion, each node has outdegree of n - 1 (half of 2n - 2).

Therefore d+(i, j) <= n - 1 holds!

Dinitz Proof: Lemma 1 + Lemma 2



Step 2: For this new directed graph, show that every induced subgraph has a kernel

Take some subset of the nodes A (e.g {(1, 1), (1, 2), {4, 3)}

Let X be the set of rows and Y be the set of columns e.g X = {1, …, n} and Y = {1, …, n}

Create the bipartite graph G = (X ⋃ Y, A) (A denotes connection between rows and cols)

Use the orientation (directedness of edges) to create preferences ala Marriage (men are rows and women are columns).
j > j’ in N(i) if (i, j) → (i, j’) in Sn. Similarly i > i’ in N(j) if (i, j) → (i’, j) in Sn.

Lemma 2 says there exists a stable matching, M. M, a subset of A, is the kernel! Why?

1) M is independent since it is a matching (i.e no common endpoints in M/row j only appears once if at all)
2) Take an edge outside the kernel, (i, j) in A\M, by stable matching either

a) There exists j’ s.t (i, j’) in M and j’ > j which means (i, j) → (i, j’) in M (because preferences were constructed from 
the directedness of Sn.

b) There exists i’ s.t (i’, j) in M and i’ > i which means (i, j) → (i’, j) in M

Dinitz Proof: Lemma 1 + Lemma 2


