Dinitz! Graphs! Coloring!

May 2020

The Dinitz Problem

raised by Jeft Dinitz in 1978, which defied all attacks until its astonishingly simple solution by Fred Galvin fifteen years later.

Consider n^{2} cells arranged in an $(n \times n)$-square, and let (i, j) denote the cell in row i and column j. Suppose that for every cell (i, j) we are given a set $C(i, j)$ of n colors.
Is it then always possible to color the whole array by picking for each cell (i, j) a color from its set $C(i, j)$ such that the colors in each row and each column are distinct?

Kind of like Sudoku where numbers are colors

Trival Cases for $n \times n$ grid

All color sets are different (e.g n^{2} nodes, n^{2} colors)
$\forall x, x^{\prime}: x \neq x^{\prime}, C(x) \cap C\left(x^{\prime}\right)=\emptyset$

All color sets are the same and there are n colors (Latin Square)

1	2	3	4
4	1	2	3
3	4	1	2
2	3	4	1

Works with any arbitrary initial permutation
Can't do it with < n colors

$\{1,2\}$	$\{2,3\}$
$\{1,3\}$	$\{2,3\}$

1. Start with the first row being 1,2
2. Forced to choose 3 for cell 1,0
3. Choosing 2 or 3 for cell 1,1 does not work

Smaller set of solutions if they even exist (I think)

Undirected Graph Definitions: G(V, E)

$G(V, E)$ is a graph with a set of vertices/nodes (V) and edges (E)

$X(G)$ is the chromatic number of G :
Smallest number of independent sets (set with vertices that do not share edges) that partition V (cover all of V)

E.g Smallest amount of colors needed to color the graph (ignore color sets for each vertex

List coloring is a mapping $c: V \rightarrow U_{v \operatorname{lin} v} C(v)$ such that $c(v)$ in $C(v)$ and for all v, v^{\prime} in $E, c(v)!=c\left(v^{\prime}\right)$
E.g Given each node has a color set, an assignment that picks from each node's color set such that adjacent nodes don't share the same color
$X_{(}(G)$ is the list chromatic number: smallest k s.t for all color sets of size k over $V\left(C\left(v_{1}\right), \ldots, C\left(v_{N}\right)\right)$, there exists a list coloring

Note that $X_{l}(G)>=X(G)$ since same-color set coloring is just a specific choice of color set. $X_{l}(G)$ is the smallest k for all color sets (of size k), including the super messed up ones

Dinitz in Graph Language

S_{n} is the grid with n rows/cols, squares as nodes and edges shared by nodes in the same row or column

$$
X_{l}\left(S_{n}\right)=n ?\left(\text { Why can't this be less than } n ? X\left(S_{n}\right)=n\right)
$$

The graph S_{3}
raised by Jeff Dinitz in 1978, which defied all attacks until its astonishingly simple solution by Fred Galvin fifteen years later.

Consider n^{2} cells arranged in an $(n \times n)$-square, and let (i, j) denote the cell in row i and column j. Suppose that for every cell (i, j) we are given a set $C(i, j)$ of n colors.
Is it then always possible to color the whole array by picking for each cell (i, j) a color from its set $C(i, j)$ such that the colors in each row and each column are distinct?

Subgraph: If A is a subset of V, G_{A} is the subgraph formed from A and all the edges from G containing A
H is an induced subgraph of G if there exists A, a subset of V and $H=G_{A}$
$\boldsymbol{G}(V, E)(i . e B O L D G)$ is a directed graph, edges have direction. $d^{+}(v)$ is the outdegree, $d^{\prime}(v)$ is the indegree and $d^{+}(v)+d^{+}(v)=d(v)$
K, a subset of V, is a kernel if:
i) K is independent in $G(\operatorname{not} \mathbf{G})$
ii) for all u Inotin K, there exists a v in K s.t $u \rightarrow v$

Lemma 1. Let $\vec{G}=(V, E)$ be a directed graph, and suppose that for each vertex $v \in V$ we have a color set $C(v)$ that is larger than the outdegree, $|C(v)| \geq d^{+}(v)+1$. If every induced subgraph of \vec{G} possesses a kernel, then there exists a list coloring of G with a color from $C(v)$ for each v.

Why will this be useful? (Dinitz to Lemma 1 took 14 yrs, Lemma 1 to end took 1 yr)

- we have S_{n} which is undirected so to use this we'll need to convert S_{n} into
a directed graph (find a direction for the edges, an orientation)
- with "enough" colors, there exists a list coloring
after Lemma 1, we still need to
- find an orientation such that $d^{+}(v)<=n-1$ (create the directed version S_{n})
- show every induced subgraph of $\mathbf{S}_{\mathbf{n}}$ has a kernel

Lemma 1 Proof

Lemma 1. Let $\vec{G}=(V, E)$ be a directed graph, and suppose that for each vertex $v \in V$ we have a color set $C(v)$ that is larger than the outdegree, $|C(v)| \geq d^{+}(v)+1$. If every induced subgraph of \vec{G} possesses a kernel, then there exists a list coloring of G with a color from $C(v)$ for each v.

Backwards induction?

If $|V|=1$, nothing to prove, so assume $|V|>1$.

Start of loop

Choose an arbitrary color from the union of all color sets, c. Form the set of nodes with c in their respective color sets, $\mathrm{A}(\mathrm{c})$.
Induce the subgraph on $A(c)$ from $G \rightarrow G_{A(c)}$. By hypothesis, there exists a kernel $\mathrm{K}(\mathrm{c})$ on that subgraph. Color all the nodes in K (c) by c (they are independent so not adjacent).

Create a new graph/induce a subgraph, G^{\prime}, from $\mathrm{V} \backslash \mathrm{K}(\mathrm{c})$ with new color sets $\mathrm{C}^{\prime}(\mathrm{v})=\mathrm{C}(\mathrm{v}) \backslash\{\mathrm{c}\}$.
End loop

The condition $\left|C^{\prime}(v)\right|>=d^{+}(v)+1$ still holds for v in $A(c) \backslash K(c)$ since we deleted at least one of their old kernel neighbors and a single color (RHS decreases more than LHS). For v \notin A(c), their color sets stay the same and their outdegree weakly decreases so the condition still holds for them as well. Note that $\left|G^{\prime}\right|<|G|$, so we're done.

Where are we?

Lemma 1. Let $\vec{G}=(V, E)$ be a directed graph, and suppose that for each vertex $v \in V$ we have a color set $C(v)$ that is larger than the outdegree, $|C(v)| \geq d^{+}(v)+1$. If every induced subgraph of \vec{G} possesses a kernel, then there exists a list coloring of G with a color from $C(v)$ for each v.

We are done if:

- We find an orientation for S_{n} (convert S_{n} into the directed version S_{n}) that also satisfies the outdegree condition ($n>=$ $\left.\mathrm{d}^{+}(\mathrm{v})+1\right)$ AND
- we prove that every induced subgraph of S_{n} possesses a kernel

Note: last line of Lemma 1 is there exists a list coloring of the undirected graph.

Detour into Bipartite Graphs

$G=(X \cup Y, E)$, where edges connect x and y, not x and x^{\prime} nor y and y^{\prime}

Intuition: X is the set of Men and Y is the set of Women and an edge is a pairing of a man and woman

A matching is a bipartite graph where none of the edges share an end vertex. E.g a set of marriages where no bigamy (man has multiple wives or woman has multiple husbands).

Adding preferences...suppose each node, $\mathrm{v}($ in X or Y$)$ has an ordering their adjacent nodes, $\mathrm{N}(\mathrm{v})=\left\{\mathrm{z}_{1}>\mathrm{z}_{2}>\ldots>\mathrm{Z}_{\mathrm{d}(\mathrm{v})}\right\}$
A stable matching is a matching where no 2 nodes are each better off by forming another marriage. I.e for all uv in $E \backslash M$ (a feasible match between u in X and v in Y), either uy in M and $y>v$ in $N(u)$ (u is matched with someone they prefer) or $x v$ in M and $x>u$ in $N(v)$ (v is matched with someone they prefer)

Stable Matching Always Exists

Proof:

Set $\mathrm{R}=\mathrm{X}$ and all strings for females are empty

Loop until R is empty

1. All men, u in R, propose to their current top choice (no going backwards)
2. If a girl receives more than one proposal, she chooses the top pick among the current proposals and puts him on a "string"
3. Men rejected with no options left die, all the other rejected men go into the reservoir R (update R)
4. Repeat

This terminates as each loop has some men go strictly forward through their list of choices. The is stable because

Suppose uv in E but uv not in M. Either:

Case 1: u never proposed to v

- he stopped before getting to v in favor of someone else (exists y in Y s.t uy in M with $y>v$ in $N(u)$)

Case 2: u did propose to v
$-v$ rejected the proposal in favor of someone else (exists x in X s.t $x v$ in M with $x>v$ in $N(v)$)

Dinitz Proof: Lemma 1 + Lemma 2

Step 1: Find an orientation such that $d^{+}(i, j)<=n-1$

Step 2: For this new directed graph, show that every induced subgraph has a kernel

Setup:

Vertices are denoted i, j (row $\mathrm{i}, \mathrm{col} \mathrm{j})$. Therefore (i, j) and (r, s) are adjacent if $\mathrm{i}=\mathrm{r}$ or $\mathrm{j}=\mathrm{s}$.

Step 1:

Setup a Latin square.
For each of the rows, a node u has an edge to v in the row if $L(u)<L(v)$ (this sets up horizontal edges) For each of the columns, a node u has an edge to v in the col if $L(u)>L(v)$ (this sets up vertical edges)

Note that a given node has $n-1$ other nodes in the same row and $n-1$ other nodes in the same col, so $2 n-2$. Because the rows and columns point in <, > fashion, each node has outdegree of $n-1$ (half of $2 n-2$).

Therefore $\mathrm{d}^{+}(\mathrm{i}, \mathrm{j})$ <= $\mathrm{n}-1$ holds!

Dinitz Proof: Lemma 1 + Lemma 2

Step 2: For this new directed graph, show that every induced subgraph has a kernel

Take some subset of the nodes A (e.g $\{(1,1),(1,2),\{4,3)\}$

Let X be the set of rows and Y be the set of columns e.g $X=\{1, \ldots, n\}$ and $Y=\{1, \ldots, n\}$

Create the bipartite graph $G=(X \cup Y, A)(A$ denotes connection between rows and cols)

Use the orientation (directedness of edges) to create preferences ala Marriage (men are rows and women are columns). $j>j^{\prime}$ in $N(i)$ if $(i, j) \rightarrow\left(i, j^{\prime}\right)$ in S_{n}. Similarly $i>i^{\prime}$ in $N(j)$ if $(i, j) \rightarrow\left(i^{\prime}, j\right)$ in S_{n}.

Lemma 2 says there exists a stable matching, M. M, a subset of A, is the kernel! Why?

1) M is independent since it is a matching (i.e no common endpoints in $M /$ row j only appears once if at all)
2) Take an edge outside the kernel, (i, j) in $\mathrm{A} \backslash \mathrm{M}$, by stable matching either
a) There exists j^{\prime} s.t $\left(i, j^{\prime}\right)$ in M and $j^{\prime}>j$ which means $(i, j) \rightarrow\left(i, j^{\prime}\right)$ in M (because preferences were constructed from the directedness of $\mathbf{S}_{\mathbf{n}}$.
b) There exists i' s.t $\left(i^{\prime}, j\right)$ in M and $i^{\prime}>i$ which means $(i, j) \rightarrow\left(i^{\prime}, j\right)$ in M
