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The Dinitz Problem

raised by Jeft Dinitz in 1978, which defied all attacks until its astonishingly

simple solution by Fred Galvin fifteen years later. i
C(i.j)
Consider n? cells arranged in an (n x n)-square, and let (i. j) de- /
note the cell in row i and column j. Suppose that for every cell (i, j) v
we are given a set C'(i, j) of n colors. i

Is it then always possible to color the whole array by picking for
each cell (i, j) a color from its set C(i,j) such that the colors in
each row and each column are distinct?

Kind of like Sudoku where numbers are colors



Trival Cases for n x n grid

All color sets are different (e.g n? nodes, n? colors)

Ve, cx £ 2/, C(z)NC(z') =10

All color sets are the same and there are n colors (Latin Square)

Works with any arbitrary initial permutation

Can't do it with < n colors




More colors is more difficult as one cannot start arbitrarily

{1.2}

{2,3}

{1,3}

{2,3}

1. Start with the first row being 1, 2
2. Forced to choose 3 forcell 1,0
3. Choosing 2 or 3 for cell 1, 1 does not work

Smaller set of solutions if they even exist (I think)



Undirected Graph Definitions: G(V, E)

G(V, E) is a graph with a set of vertices/nodes (V) and edges (E)

X(G) is the chromatic number of G:

Smallest number of independent sets (set with vertices that do not share edges) that
partition V (cover all of V)

y(Kg) =6 ¥(Cs)=3 Y(Cg) =2

/I\

E.g Smallest amount of colors needed to color the graph (ignore color sets for each vertex



Undirected Graph Definitions: G(V, E)

List coloring is a mapping ¢: V — U, .. C(v) such that c(v) \in C(v) and
for all v, v’in E, c(v) = c(V)

E.g Given each node has a color set, an assignment that picks from
each node’s color set such that adjacent nodes don't share the same
color

X(G) is the list chromatic number: smallest k s.t for all color sets of size
k over V (C(v.), .., C(v,)), there exists a list coloring

Note that X(G) >= X(G) since same-color set coloring is just a specific
choice of color set. X(G) is the smallest k for all color sets (of size k),
including the super messed up ones



Dinitz in Graph Language

S_is the grid with n rows/cols, squares as nodes and edges
shared by nodes in the same row or column

X/(S, ) =n? (Why can't this be less than n? X(S ) = n)

raised by Jeft Dinitz in 1978, which defied all attacks until its astonishingly
simple solution by Fred Galvin fifteen years later.
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The graph S3

Consider n* cells arranged in an (n x n)-square, and let (i. j) de-

A

note the cell in row i and column j. Suppose that for every cell (i, j)

we are given a set C(i. ) of n colors.
Is it then always possible to color the whole array by picking for

each cell (i, j) a color from its set C(i,j) such that the colors in

each row and each column are distinct?




Subgraphs, Directed Graphs notation

Subgraph: If A is a subset of V, G, is the subgraph formed from A and all
the edges from G containing A

H is an induced subgraph of G if there exists A, a subset of Vand H =G,

G(V, E) (i.e BOLD G) is a directed graph, edges have direction. a
d*(v) is the outdegree, d(v) is the indegree and d*(v) + d"(v) = d(v)

K, a subset of V, is a kernel if:
i) K is independent in G (not G)
ii) for all u \notin K, there exists avin Ks.tu —v



Lemma 1 Proof

Lemma 1. Let G = (V. E) be a directed graph, and suppose that for each
vertex v € V we have a color set C'(v) that is larger than the outdegree,
|C(v)| = d*(v) + 1. If every induced subgraph ofé possesses a kernel,
then there exists a list coloring of G with a color from C(v) for each v.

Why will this be useful? (Dinitz to Lemma 1 took 14 yrs, Lemma 1 to end
took 1 yr)

- we have S_ which is undirected so to use this we'll need to convert S_ into
a directed graph (find a direction for the edges, an orientation)

- with “enough” colors, there exists a list coloring

after Lemma 1, we still need to

- find an orientation such that d*(v) <= n - 7 (create the directed version S )
- show every induced subgraph of §_has a kernel



Lemma 1 Proof

Lemma 1. Let G = (V. E) be a directed graph, and suppose that for each
vertex v € V we have a color set C(v) that is larger than the outdegree,
|C(v)| = d*(v) + 1. If every induced subgraph of G possesses a kernel,
then there exists a list coloring of G with a color from C(v) for each v.

Backwards induction?
If V| = 1, nothing to prove, so assume [V] > 1.

Start of loop
Choose an arbitrary color from the union of all color sets, c. Form the set of nodes with c in their respective color sets, A(c).

Induce the subgraph on A(c) from G — GA(C). By hypothesis, there exists a kernel K(c) on that subgraph. Color all the nodes in
K(c) by c (they are independent so not adjacent).

Create a new graph/induce a subgraph, G’, from V\K(c) with new color sets C'(v) = C(v)\{c}.
End loop

The condition |C’(v)| >= d*(v) + 1 still holds for v in A(c)\K(c) since we deleted at least one of their old kernel neighbors and a
single color (RHS decreases more than LHS). For v \notin A(c), their color sets stay the same and their outdegree weakly
decreases so the condition still holds for them as well. Note that |G’| < |G|, so we're done.



Where are we?

Lemma 1. Let G = (V. E) be a directed graph, and suppose that for each
vertex v € V we have a color set C(v) that is larger than the outdegree,

|C(v)| = d*(v) + 1. If every induced subgraph of G possesses a kernel,
then there exists a list coloring of G with a color from C(v) for each v.

We are done if:
- We find an orientation for S_(convert S_ into the directed version S ) that also satisfies the outdegree condition (n >=
d*(v) + 1) AND

- we prove that every induced subgraph of S possesses a kernel

Note: last line of Lemma 1 is there exists a list coloring of the undirected graph.



Detour into Bipartite Graphs

G = (XUY, E), where edges connect x and y, not x and x’ nory and y’
Intuition: X is the set of Men and Y is the set of Women and an edge is a pairing of a man and woman

A matching is a bipartite graph where none of the edges share an end vertex. E.g a set of marriages where no bigamy (man has
multiple wives or woman has multiple husbands).

Adding preferences...suppose each node, v (in X or Y) has an ordering their adjacent nodes, N(v) ={z, >z, > .. > zd(v)}
A stable matching is a matching where no 2 nodes are each better off by forming another marriage.

l.e for all uv in E\M (a feasible match between u in X and v in Y), either uy in M and y > v in N(u) (u is matched with someone they
prefer) or xvin M and x > u in N(v) (v is matched with someone they prefer)



Stable Matching Always Exists

Proof:
Set R = X and all strings for females are empty
Loop until R is empty

1.  Allmen, uin R, propose to their current top choice (no going backwards)
2. If agirl receives more than one proposal, she chooses the top pick among the current proposals and puts him on a

“string”
3.  Men rejected with no options left die, all the other rejected men go into the reservoir R (update R)
4.  Repeat

This terminates as each loop has some men go strictly forward through their list of choices. The is stable because
Suppose uv in E but uv not in M. Either:

Case 1: u never proposed to v

- he stopped before getting to v in favor of someone else (exists yin Y s.t uy in M with y > v in N(u))
Case 2: u did propose to v

- v rejected the proposal in favor of someone else (exists x in X s.t xv in M with x > v in N(v))



Dinitz Proof;: Lemma 1 + Lemma 2

Step 1: Find an orientation such that d*(i,j) <=n- 1

Step 2: For this new directed graph, show that every induced subgraph has a kernel

Setup:

Vertices are denoted i, j (row i, col j). Therefore (i, j) and (r, s) are adjacentifi=rorj=s. i oo

Step 1:

[ SV I Lo
wol- |
- |
3
£

Y
A

Setup a Latin square.
For each of the rows, a node u has an edge to v in the row if L(u) < L(v) (this sets up horizontal edges)
For each of the columns, a node u has an edge to v in the col if L(u) > L(v) (this sets up vertical edges)

Note that a given node has n - 1 other nodes in the same row and n - 1 other nodes in the same col, so 2n - 2. Because the rows
and columns point in <, > fashion, each node has outdegree of n - 1 (half of 2n - 2).

Therefore d*(i, j) <= n- 1 holds!



Dinitz Proof;: Lemma 1 + Lemma 2

Step 2: For this new directed graph, show that every induced subgraph has a kernel
Take some subset of the nodes A (e.g {(1, 1), (1, 2), {4, 3)}

Let X be the set of rows and Y be the set of columns e.g X ={1, ..,n}and Y ={1, .., n}
Create the bipartite graph G = (XU'Y, A) (A denotes connection between rows and cols)

Use the orientation (directedness of edges) to create preferences ala Marriage (men are rows and women are columns).
j>1"inNQ) if (i, ) — (i,]") in S, Similarly i > i" in N() if (i, j) — (",J) in S,

Lemma 2 says there exists a stable matching, M. M, a subset of A, is the kernel! Why?

1) Misindependent since it is a matching (i.e no common endpoints in M/row j only appears once if at all)
2)  Take an edge outside the kernel, (i, j) in A\M, by stable matching either
a) There existsj s.t(i,j') in M and j > j which means (i, j) — (i, j’) in M (because preferences were constructed from
the directedness of S .
b)  There exists i’ s.t (i',j) in M and i’ > i which means (i, j)) — (i’,j) in M



