

Pacing

Topics/Style
Exercises

Cadence

Euclid's Proof. For any finite set $\left\{p_{1}, \ldots, p_{r}\right\}$ of primes, consider the number $n=p_{1} p_{2} \cdots p_{r}+1$. This n has a prime divisor p. But p is not one of the p_{i} : otherwise p would be a divisor of n and of the product $p_{1} p_{2} \cdots p_{r}$, and thus also of the difference $n-p_{1} p_{2} \cdots p_{r}=1$, which is impossible. So a finite set $\left\{p_{1}, \ldots, p_{r}\right\}$ cannot be the collection of all prime numbers.

Prime p has only two factors 1 and p (ignore $-1,-p$)
Every integer can be expressed as a (unique) product of primes
Proof by contradiction: suppose p is one of the p_{i}

1) By definition of p, p divides n
2) By hypothesis, p divides $p_{1} \ldots p_{r}$

Therefore p divides 1, contradiction, invalidates hypothesis

■ Second Proof. Let us first look at the Fermat numbers $F_{n}=2^{2^{n}}+1$ for $n=0,1,2, \ldots$. We will show that any two Fermat numbers are relatively prime; hence there must be infinitely many primes. To this end, we verify the recursion

$$
\prod_{k=0}^{n-1} F_{k}=F_{n}-2 \quad(n \geq 1)
$$

from which our assertion follows immediately. Indeed, if m is a divisor of, say, F_{k} and $F_{n}(k<n)$, then m divides 2 , and hence $m=1$ or 2 . But $m=2$ is impossible since all Fermat numbers are odd.
To prove the recursion we use induction on n. For $n=1$ we have $F_{0}=3$ and $F_{1}-2=3$. With induction we now conclude

$$
\begin{aligned}
\prod_{k=0}^{n} F_{k} & =\left(\prod_{k=0}^{n-1} F_{k}\right) F_{n}=\left(F_{n}-2\right) F_{n}= \\
& =\left(2^{2^{n}}-1\right)\left(2^{2^{n}}+1\right)=2^{2^{n+1}}-1=F_{n+1}-2
\end{aligned}
$$

Infinite sequence of Fermat numbers

Any two Fermat numbers are coprime -> infinite number of primes (proof: F_{1} has to be coprime with the rest of the sequence. Each of F_{i} 's leftover prime wrt to F_{1} has to be unique otherwise F_{i} and F_{j} would not be coprime. But the Fs are unbounded, with finite primes, contradiction)

Choose any two arbitrary Fermat numbers, show that common divisor is 1 , ie they are coprime

Abstract Algebra Background

Group, G, is a set of elements with an operation (*) which is

1. Associative (brackets don't matter - $\mathrm{a}^{*}(\mathrm{~b}$ * c$)=(\mathrm{a}$ * b$){ }^{*} \mathrm{c}=\mathrm{a}^{*} \mathrm{~b}$ * c
2. Exists an identity element e, \forall x in $G, x^{*} e=x=e^{*} x$
3. For all x in G, exists an inverse x^{-1} such that $x^{-1} x=e=x x^{-1}$

Subgroup, S is a subset of G s.t

1. S is closed to the operation (e.g forall x, y in $S, x * y$ in S)
2. S is closed to inverses (e.g forall x in S, x^{-1} in S)

If (1) and (2) hold, S is also a group.
Order of \mathbf{a} : least positive integer m s.t $a^{m}=1$ if it exists otherwise ord(a) = linfty
E.g Suppose $a^{m}=1$, then $\left\{a, a^{2}, \ldots, a^{m}\right\}$ is a group. (i.e inverse of a is a^{m-1}, identity is a^{m})

Theorem: If $\operatorname{ord}(a)=n: a^{t}=1$ iff t is a multiple of n

```
Lagrange's Theorem
If G is a finite (multiplicative) group
and U}\mathrm{ is a subgroup, then }|U
divides |G|.
- Proof. Consider the binary rela-
tion
    a~b:\Longleftrightarrowba
It follows from the group axioms
that }~\mathrm{ is an equivalence relation.
The equivalence class containing an
element }a\mathrm{ is precisely the coset
    Ua}={xa:x\inU}
Since clearly }||a|=|U|\mathrm{ , we find
that G}\mathrm{ decomposes into equivalence
classes, all of size }|U|\mathrm{ , and hence
that }|U|\mathrm{ divides }|G|\mathrm{ .
In the special case when \(U\) is a cyclic subgroup \(\left\{a, a^{2}, \ldots, a^{m}\right\}\) we find that \(m\) (the smallest positive integer such that \(a^{m}=1\), called the order of \(a\) ) divides the size \(|G|\) of the group.
```

Relation: Set of ordered tuples
Equivalence relation: A relation that is reflexive, transitive and symmetric (i.e kind of like a generalized equals sign)

Equivalence class of a: The set of all elements such that $\mathrm{x} \sim \mathrm{a}$

Proof notes:

- Coset definition from $a \sim a^{-1}$
- $|\mathrm{Ua}|=|\mathrm{U}|$, bijection $\mathrm{f}: \mathrm{U}$-> Ua where $\mathrm{f}(\mathrm{u})=\mathrm{ua}$
- Equivalence classes partition a set (cosets of U, all of same size, partition G)
- $|\mathrm{G}|=$ number of distinct equivalence classes * $|\mathrm{U}|$ the so-called Mersenne number $2^{p}-1$ and show that any prime factor q of $2^{p}-1$ is bigger than p, which will yield the desired conclusion. Let q be a prime dividing $2^{p}-1$, so we have $2^{p} \equiv 1(\bmod q)$. Since p is prime, this means that the element 2 has order p in the multiplicative group $\mathbb{Z}_{q} \backslash\{0\}$ of the field \mathbb{Z}_{q}. This group has $q-1$ elements. By Lagrange's theorem (see the box) we know that the order of every element divides the size of the group, that is, we have $p \mid q-1$, and hence $p<q$.

Order of a: least positive integer m s.t $a^{m}=1$ if it exists otherwise ord(a) = linfty
Theorem: If $\operatorname{ord}(a)=n: a^{t}=1$ iff t is a multiple of n
$\operatorname{ord}(2)=p$. Suppose not, there exists k s.t $\operatorname{ord}(2)=k, k<p$. But by above theorem, then p is a multiple of k which cannot be true as p is prime. There $\operatorname{ord}(2)=p$.
$Z_{q} /\{0\}=\{1,2, \ldots, q\}$
Cyclic subgroup of $<2>=\left\{2^{1}, 2^{2}, \ldots, 2^{p}\right\}$ (why not $2^{p+1} ? 2^{p+1}=2^{p} 2^{1}=12^{1}=2$ is already in the group)

By Lagrange, since $<2>$ is a subgroup of $Z_{q} /\{0\}, \ldots$
Also, $p \mid q-1->p<q$? Exists $k>=1$ s.t $p k=q-1, k=(q-1) / p>=1, q-1>=p->q>p$

■ Fourth Proof. Let $\pi(x):=\#\{p \leq x: p \in \mathbb{P}\}$ be the number of primes that are less than or equal to the real number x. We number the primes $\mathbb{P}=\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}$ in increasing order. Consider the natural logarithm $\log x$, defined as $\log x=\int_{1}^{x} \frac{1}{t} d t$.
Now we compare the area below the graph of $f(t)=\frac{1}{t}$ with an upper step function. (See also the appendix on page 10 for this method.) Thus for $n \leq x<n+1$ we have
$\log x \leq 1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-1}+\frac{1}{n}$
$\leq \sum \frac{1}{m}$, where the sum extends over all $m \in \mathbb{N}$ which have
Since every such m can be written in a unique way as a product of the form $\prod p^{k_{\mathrm{P}}}$, we see that the last sum is equal to $\prod_{p \leq x}$

$$
\prod_{\substack{p \in \mathbb{P} \\ p \leq x}}\left(\sum_{k \geq 0} \frac{1}{p^{k}}\right) .
$$

The inner sum is a geometric series with ratio $\frac{1}{p}$, hence

$$
\log x \leq \prod_{\substack{p \in \mathbb{P} \\ p \leq x}} \frac{1}{1-\frac{1}{p}}=\prod_{\substack{p \in \mathbb{P} \\ p \leq x}} \frac{p}{p-1}=\prod_{k=1}^{\pi(x)} \frac{p_{k}}{p_{k}-1} .
$$

Now clearly $p_{k} \geq k+1$, and thus

$$
\frac{p_{k}}{p_{k}-1}=1+\frac{1}{p_{k}-1} \leq 1+\frac{1}{k}=\frac{k+1}{k},
$$

and therefore

$$
\log x \leq \prod_{k=1}^{\pi(x)} \frac{k+1}{k}=\pi(x)+1
$$

Everybody knows that $\log x$ is not bounded, so we conclude that $\pi(x)$ is unbounded as well, and so there are infinitely many primes.

Steps above the function $f(t)=\frac{1}{t}$

Sum 1 / m contains all the previous terms and some more

Swapping sum/product isn't obvious to me but examples work

- Sixth Proof. Our final proof goes a considerable step further and demonstrates not only that there are infinitely many primes, but also that the series $\sum_{p \in \mathbb{P}} \frac{1}{p}$ diverges. The first proof of this important result was given by Euler (and is interesting in its own right), but our proof, devised by Erdôs, is of compelling beauty.
Let $p_{1}, p_{2}, p_{3}, \ldots$ be the sequence of primes in increasing order, and assume that $\sum_{p \in \mathrm{P}} \frac{1}{\mathrm{p}}$ converges. Then there must be a natural number k such that $\sum_{i \geq k+1} \frac{1}{p_{i}}<\frac{1}{2}$. Let as call p_{1}, \ldots, p_{k} the small primes, and p_{k+1}, p_{k+2}, \ldots the big primes. For an arbitrary natural number N we therefore find

$$
\begin{equation*}
\sum_{i \geq k+1} \frac{N}{p_{i}}<\frac{N}{2} \tag{1}
\end{equation*}
$$

Finite series -> convergent so series diverging -> infinite series

Definition of convergent series:

$$
\exists l, \forall \epsilon>0 \exists N, \forall n>N:\left|S_{n}-l\right|<\epsilon
$$

Let N_{b} be the number of positive integers $n \leq N$ which are divisible by at least one big prime, and N_{s} the number of positive integers $n \leq N$ which have only small prime divisors. We are going to show that for a suitable N

$$
N_{b}+N_{s}<N
$$

which will be our desired contradiction, since by definition $N_{b}+N_{s}$ would have to be equal to N.
To estimate N_{b} note that $\left\lfloor\frac{N}{p_{i}}\right\rfloor$ counts the positive integers $n \leq N$ which are multiples of p_{i}. Hence by (1) we obtain

$$
\begin{equation*}
N_{b}\left(\leq \sum_{i \geq k+1}\left\lfloor\frac{N}{p_{i}}\right\rfloor<\frac{N}{2} .\right. \tag{2}
\end{equation*}
$$

Let us now look at N_{s}. We write every $n \leq N$ which has only small prime divisors in the form $n=a_{n} b_{n}^{2}$, where a_{n} is the square-free part. Every a_{n} is thus a product of different small primes, and we conclude that there are precisely 2^{k} different square-free parts. Furthermore, as $b_{n} \leq \sqrt{n} \leq \sqrt{N}$, we find that there ared most \sqrt{N} different square parts, and so

$$
N_{s} \leq 2^{k} \sqrt{N}
$$

Since (2) holds for any N, it remains to find a number N with $2^{k} \sqrt{N} \leq \frac{N}{2}$ or $2^{k+1} \leq \sqrt{N}$, and for this $N=2^{2 k+2}$ will do.

