

Pacing

Topics/Style

Exercises

Cadence

**Euclid's Proof.** For any finite set  $\{p_1, \ldots, p_r\}$  of primes, consider the number  $n = p_1 p_2 \cdots p_r + 1$ . This *n* has a prime divisor *p*. But *p* is not one of the  $p_i$ : otherwise *p* would be a divisor of *n* and of the product  $p_1 p_2 \cdots p_r$ , and thus also of the difference  $n - p_1 p_2 \cdots p_r = 1$ , which is impossible. So a finite set  $\{p_1, \ldots, p_r\}$  cannot be the collection of *all* prime numbers.  $\Box$ 

**Prime p** has only two factors 1 and p (ignore -1, -p)

Every integer can be expressed as a (unique) product of primes

Proof by contradiction: suppose p is one of the p<sub>i</sub>

- 1) By definition of p, p divides n
- 2) By hypothesis, p divides  $p_1...p_r$

Therefore p divides 1, contradiction, invalidates hypothesis

**Second Proof.** Let us first look at the *Fermat numbers*  $F_n = 2^{2^n} + 1$  for n = 0, 1, 2, ... We will show that any two Fermat numbers are relatively prime; hence there must be infinitely many primes. To this end, we verify the recursion n-1

$$\prod_{k=0} F_k = F_n - 2 \qquad (n \ge 1),$$

from which our assertion follows immediately. Indeed, if m is a divisor of, say,  $F_k$  and  $F_n$  (k < n), then m divides 2, and hence m = 1 or 2. But m = 2 is impossible since all Fermat numbers are odd.

To prove the recursion we use induction on n. For n = 1 we have  $F_0 = 3$  and  $F_1 - 2 = 3$ . With induction we now conclude

$$\prod_{k=0}^{n} F_k = \left(\prod_{k=0}^{n-1} F_k\right) F_n = (F_n - 2) F_n = \\ = (2^{2^n} - 1)(2^{2^n} + 1) = 2^{2^{n+1}} - 1 = F_{n+1} - 2. \square$$

Infinite sequence of Fermat numbers

Any two Fermat numbers are coprime -> infinite number of primes (proof:  $F_1$  has to be coprime with the rest of the sequence. Each of  $F_i$ 's leftover prime wrt to  $F_1$  has to be unique otherwise  $F_i$  and  $F_j$  would not be coprime. But the Fs are unbounded, with finite primes, contradiction)

Choose any two arbitrary Fermat numbers, show that common divisor is 1, ie they are coprime

$$\begin{array}{rcrcrcrc} F_0 &=& 3\\ F_1 &=& 5\\ F_2 &=& 17\\ F_3 &=& 257\\ F_4 &=& 65537\\ F_5 &=& 641 \cdot 6700417 \end{array}$$

The first few Fermat numbers

## Abstract Algebra Background

Group, G, is a set of elements with an operation (\*) which is

- 1. Associative (brackets don't matter a \* (b \* c) = (a \* b) \* c = a \* b \* c
- 2. Exists an identity element e, \forall x in G, x \* e = x = e \* x
- 3. For all x in G, exists an inverse  $x^{-1}$  such that  $x^{-1}x = e = x x^{-1}$

## Subgroup, S is a subset of G s.t

- 1. S is closed to the operation (e.g forall x, y in S, x \* y in S)
- 2. S is closed to inverses (e.g forall x in S,  $x^{-1}$  in S)

If (1) and (2) hold, S is also a group.

**Order of a**: least positive integer m s.t  $a^m = 1$  if it exists otherwise ord(a) = \infty

E.g Suppose  $a^m = 1$ , then {a,  $a^2$ , ...,  $a^m$ } is a group. (i.e inverse of a is  $a^{m-1}$ , identity is  $a^m$ )

**Theorem:** If ord(a) = n:  $a^t = 1$  iff t is a multiple of n

#### Lagrange's Theorem

If G is a finite (multiplicative) group and U is a subgroup, then |U|divides |G|.

Proof. Consider the binary relation

 $a \sim b : \iff ba^{-1} \in U.$ 

It follows from the group axioms that  $\sim$  is an equivalence relation. The equivalence class containing an element *a* is precisely the coset

 $Ua=\{xa:x\in U\}.$ 

Since clearly |Ua| = |U|, we find that G decomposes into equivalence classes, all of size |U|, and hence that |U| divides |G|.

In the special case when U is a cyclic subgroup  $\{a, a^2, \ldots, a^m\}$  we find that m (the smallest positive integer such that  $a^m = 1$ , called the *order* of a) divides the size |G| of the group.

Relation: Set of ordered tuples

**Equivalence relation:** A relation that is reflexive, transitive and symmetric (i.e kind of like a generalized equals sign)

# **Equivalence class of a:** The set of all elements such that $x \sim a$

**Proof notes:** 

- Coset definition from a ~ a<sup>-1</sup>
- |Ua| = |U|, bijection f: U -> Ua where f(u) = ua
- Equivalence classes partition a set (cosets of U, all of same size, partition G)
- |G| = number of distinct equivalence classes \* |U|

■ Third Proof. Suppose  $\mathbb{P}$  is finite and p is the largest prime. We consider the so-called *Mersenne number*  $2^p - 1$  and show that any prime factor qof  $2^p - 1$  is bigger than p, which will yield the desired conclusion. Let q be a prime dividing  $2^p - 1$ , so we have  $2^p \equiv 1 \pmod{q}$ . Since p is prime, this means that the element 2 has order p in the multiplicative group  $\mathbb{Z}_q \setminus \{0\}$  of the field  $\mathbb{Z}_q$ . This group has q - 1 elements. By Lagrange's theorem (see the box) we know that the order of every element divides the size of the group, that is, we have  $p \mid q - 1$ , and hence p < q.

**Order of a**: least positive integer m s.t  $a^m = 1$  if it exists otherwise ord(a) = \infty

**Theorem:** If ord(a) = n:  $a^t = 1$  iff t is a multiple of n

**ord(2)** = p. Suppose not, there exists k s.t ord(2) = k, k < p. But by above theorem, then p is a multiple of k which cannot be true as p is prime. There ord(2) = p.

 $Z_q / \{0\} = \{1, 2, ..., q\}$ 

Cyclic subgroup of  $\langle 2 \rangle = \{2^1, 2^2, ..., 2^p\}$  (why not  $2^{p+1}$ ?  $2^{p+1} = 2^p 2^1 = 1 2^1 = 2$  is already in the group)

By Lagrange, since <2> is a subgroup of  $Z_a / \{0\}, \dots$ 

Also, p | q - 1 -> p < q? Exists k >= 1 s.t p k = q - 1, k = (q - 1) / p >= 1, q - 1 >= p -> q > p

**Fourth Proof.** Let  $\pi(x) := \#\{p \le x : p \in \mathbb{P}\}\$  be the number of primes that are less than or equal to the real number x. We number the primes  $\mathbb{P} = \{p_1, p_2, p_3, \ldots\}\$  in increasing order. Consider the natural logarithm  $\log x$ , defined as  $\log x = \int_1^x \frac{1}{t} dt$ .

Now we compare the area below the graph of  $f(t) = \frac{1}{t}$  with an upper step function. (See also the appendix on page 10 for this method.) Thus for  $n \le x < n+1$  we have

$$\begin{split} \log x &\leq 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n-1} + \frac{1}{n} \\ &\leq \sum \frac{1}{m}, \text{ where the sum extends over all } m \in \mathbb{N} \text{ which have only prime divisors } p \leq x. \end{split}$$

Since every such m can be written in a unique way as a product of the form  $\prod_{p\leq x} p^{k_p},$  we see that the last sum is equal to

$$\prod_{\substack{p\in\mathbb{P}\\p\leq x}}\Big(\sum_{k\geq 0}\frac{1}{p^k}\Big)$$

The inner sum is a geometric series with ratio  $\frac{1}{n}$ , hence

$$\log x \le \prod_{\substack{p \in \mathbb{P} \\ p \le x}} \frac{1}{1 - \frac{1}{p}} = \prod_{\substack{p \in \mathbb{P} \\ p \le x}} \frac{p}{p - 1} = \prod_{k=1}^{\pi(x)} \frac{p_k}{p_k - 1}.$$

Now clearly  $p_k \ge k + 1$ , and thus

$$\frac{p_k}{p_k - 1} = 1 + \frac{1}{p_k - 1} \le 1 + \frac{1}{k} = \frac{k + 1}{k},$$

and therefore

$$\log x \le \prod_{k=1}^{\pi(x)} \frac{k+1}{k} = \pi(x) + 1.$$

Everybody knows that  $\log x$  is not bounded, so we conclude that  $\pi(x)$  is unbounded as well, and so there are infinitely many primes.



Sum 1 / m contains all the previous terms and some more

Swapping sum/product isn't obvious to me but examples work

■ Sixth Proof. Our final proof goes a considerable step further and demonstrates not only that there are infinitely many primes, but also that the series  $\sum_{p \in \mathbb{P}} \frac{1}{p}$  diverges. The first proof of this important result was given by Euler (and is interesting in its own right), but our proof, devised by Erdős, is of compelling beauty.

Let  $p_1, p_2, p_3, \ldots$  be the sequence of primes in increasing order, and assume that  $\sum_{p \in \mathbb{P}} \frac{1}{p}$  converges. Then there must be a natural number k such that  $\sum_{i \geq k+1} \frac{1}{p_i} < \frac{1}{2}$ . Let us call  $p_1, \ldots, p_k$  the *small* primes, and  $p_{k+1}, p_{k+2}, \ldots$  the *big* primes. For an arbitrary natural number N we therefore find

$$\sum_{i\geq k+1}\frac{N}{p_i} < \frac{N}{2}.$$
 (1)

Finite series -> convergent so series diverging -> infinite series

### Definition of convergent series:

 $\exists l, \forall \epsilon > 0 \exists N, \forall n > N : |S_n - l| < \epsilon$ 

Let  $N_b$  be the number of positive integers  $n \le N$  which are divisible by at least one big prime, and  $N_s$  the number of positive integers  $n \le N$  which have only small prime divisors. We are going to show that for a suitable N

$$N_b + N_s < N$$
,

which will be our desired contradiction, since by definition  $N_b + N_s$  would have to be equal to N.

To estimate  $N_b$  note that  $\lfloor \frac{N}{p_i} \rfloor$  counts the positive integers  $n \leq N$  which are multiples of  $p_i$ . Hence by (1) we obtain

$$N_b \leq \sum_{i \ge k+1} \left\lfloor \frac{N}{p_i} \right\rfloor < \frac{N}{2}.$$
<sup>(2)</sup>

Let us now look at  $N_s$ . We write every  $n \le N$  which has only small prime divisors in the form  $n = a_n b_n^2$ , where  $a_n$  is the square-free part. Every  $a_n$ is thus a product of *different* small primes, and we conclude that there are precisely  $2^k$  different square-free parts. Furthermore, as  $b_n \le \sqrt{n} \le \sqrt{N}$ , we find that there are  $\frac{1}{\sqrt{N}}$  different square parts, and so

$$N_s \leq 2^k \sqrt{N}.$$

Since (2) holds for any N, it remains to find a number N with  $2^k \sqrt{N} \le \frac{N}{2}$ or  $2^{k+1} \le \sqrt{N}$ , and for this  $N = 2^{2k+2}$  will do.