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ABSTRACT
Understanding the value of acquiring or retaining subscribers is
crucial for subscription-based businesses. While customer lifetime
value (LTV) is commonly used to do so, we demonstrate that LTV
likely over-states the true value of acquisition or retention. We
establish a methodology to estimate the monetary value of acquired
or retained subscribers based on estimating both on and off-service
LTV. To overcome the lack of data on off-service households, we
use an approach based on Markov chains that recovers off-service
LTV fromminimal data on non-subscriber transitions. Furthermore,
we demonstrate how the methodology can be used to (i) forecast
aggregate subscriber numbers that respect both aggregate market
constraints and account-level dynamics, (ii) estimate the impact of
price changes on revenue and subscription growth and (iii) provide
optimal policies, such as price discounting, that maximize expected
lifetime revenue.

CCS CONCEPTS
• Computing methodologies → Markov decision processes;
• Applied computing→ Economics; • General and reference
→ Measurement.
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1 INTRODUCTION
Understanding the incremental value of subscribers is essential to
subscription services. Marketing or product investments generally
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aim to increase acquisition of new subscribers or retention of exist-
ing subscribers. The evaluation of these core investments is difficult
because the costs of such investments are easily measured, yet the
monetary benefits are not obvious. Without the ability to evaluate
investments, businesses cannot optimize towards profitable future
investments leading to sub optimal business outcomes. This paper
develops a methodology to accurately quantify the monetary value
of acquired or retained subscribers.

By definition, subscription-based services grow by acquiring and
retaining subscribers. To do so, they may launch new content or fea-
tures [2], run marketing campaigns [20], or offer pricing packages
that better suit subscriber needs [6]. Measuring the causal impact
on acquisition or retention (in units of subscribers) from these in-
terventions can be difficult, but approaches based on randomized
control trials [22] or observational studies [16] exist.

However, it is not clear what monetary value to assign to an
acquired or retained subscriber. Although it is common practice,
we demonstrate that using LTV (or remaining LTV in the case of
retention) will tend to overstate the value of acquisition or reten-
tion for a subscription business. Instead, we demonstrate that the
difference between on and off-service LTV, incremental LTV, is the
more appropriate quantity of interest and develop a Markov chain
based estimation approach.

Conceptually, acquiring a new subscriber or retaining an existing
subscriber transitions (or saves from the perspective of the business)
a customer from an off-service state to an on-service state. Naturally
then, the value of that acquisition or retention to the business is
the difference between the expected cumulative revenue from that
individual in the on-service state and from that same individual if
they were in the off-service state. Note crucially that the latter is
positive if there is a positive probability of an individual becoming
a subscriber when off-service. By using LTV to value acquisition or
retention, one is implicitly assuming that the value of off-service
states are zero. However, if there is positive probability of a non-
subscriber joining, or rejoining, then LTV is likely upwards biased
since it fails to subtract the baseline value associated with the off-
service state.

As an example, suppose prices are increased and we have some
method to determine the subscribers who churned as a result. For
each of these former subscribers, calculating the difference in ex-
pected lifetime value if they had stayed on service from the revenue
expected in their churned state provides an estimate of the value of
churn for each former subscriber which in sum is the aggregate cost
of the price increase. The aggregate cost of the price increase is a
crucial quantity in assessing the success of the price increase. Since
it is denominated in dollar units, the difference between the revenue
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gains of the price increase and the total cost is itself in dollar units,
providing a dollar valuation of the price increase intervention.

This paper introduces a model that estimates the incremental
customer lifetime value in a subscription service in an event of ac-
quisition or retention. Our proposed methodology models the cus-
tomer lifetime through a finite Markov chain, allowing for multiple
subscriptions and transitions between states such as on-service/off-
service, tenure, subscription plans, or more generally, any other
attributes that impact acquisition and churn probabilities. By chain-
ing together the many probabilistic transitions from state to subse-
quent states, our methodology can model the expected lifetime and
cumulative revenue from any given initial state. We can simply find
the appropriate counterfactual for various events such as acquiring
a new subscriber or retaining a current subscriber, and use the dif-
ference between the expected revenue starting from a state and its
counterfactual as the incremental lifetime value. More specifically,
the methodology can answer several important questions related
to subscription services such as forecasting aggregate subscriber
figures or estimating the impact of price changes on subscriber
growth and revenue.

The contributions of this paper are: (1) present a scalable frame-
work to estimate the incremental lifetime value of an acquired or
retained subscriber that is more accurate than LTV and extends
to multiple subscriptions, (2), extends the proposed methodology
to forecast subscribers in a manner satisfying natural constraints
such as the remaining size of the market and (3), demonstrate how
the approach can be used to set policies, such as pricing, optimally
to maximize lifetime revenue.

The paper is organized as follows. Section 2 shows how we can
use a finite Markov chain to estimate the incremental lifetime value
of a subscriber in an acquisition or retention event. Section 3 ex-
tends our framework to three applications common to subscription
services (i) forecasting aggregate subscriber counts, (ii) estimat-
ing the incremental revenue or subscription impact due to price
interventions, and (iii) optimizing sequences of prices to maximize
lifetime revenue. Finally Section 4 concludes.

1.1 Related Literature
The majority of prior research on customer lifetime valuation fo-
cuses on predicting LTV, as the definition is taken as given: the
discounted sum of expected revenue from a customer [3, 10]. There
exist a vast literature in machine learning and economics on un-
derstanding customer lifetime value. Gupta et al. [8] review mod-
eling advances in the customer lifetime valuation literature and
provide empirical insights obtained from various models. Most of
the proposed models focus on machine learning techniques that
use consumer level features [1, 4, 21] such as recency, frequency
and monetary characteristics to predict individual LTV outcomes.
The most similar approach to ours is an approach that sets up a
discrete choice model resulting in Markov probabilistic switching
between brands [19]. In this paper, we aggregate LTV over cohorts
of subscribers where effects of fine-grained features would wash
out in aggregate. Moreover, our focus is on incremental LTV where
the estimand of interest is the difference between LTV at different
states.

Compartmental models used in epidemiology focus on modeling
transitions of people between compartments (such as susceptible,
infected and recovered states in SIR models), with transition proba-
bilities governing population dynamics [14]. By modeling the popu-
lation in a closed system, it is straightforward to forecast the spread
of diseases under various assumptions underlying the disease. We
take a similar closed system approach by explicitly modeling never
or former subscribers, which is key to estimating the incremental
value of an acquired or retained subscriber.

Variousmethodologies have been undertaken to forecast demand
of subscription services [7, 18]. The majority of these studies use
traditional time series methods that aim to minimize shorter-term
forecast errors [12]. However, in the case of subscription services,
such models will perform poorly when longer forecast horizons are
required as they don’t account for market size constraints. In other
words, they are unaware of structural constraints that bind over
longer time horizons. By modeling the subscription dynamics in a
closed systemwhich naturally incorporates amarket size constraint,
our forecasting methodology provides more accurate longer term
forecasts.

In subscription-based industries, one of the key levers to en-
hance profitability is price. Many mathematical models have been
proposed to find the optimal pricing strategy in the literature. In
[11], authors propose a methodology to set the optimal pricing for
a magazine publishing firm facing stochastic demand over multiple
periods. They model the dynamics of customer subscription and re-
tention/attrition as a function of production quantity, subscription
price and newsstand price. They propose a dynamic programming
formulation to find the optimal policy. In this paper, we adopt a
similar methodology and show that if an estimates of the elasticity
of the Markov Chain transition probabilities with respect to prices
are available, our framework can be used to find the optimal policy
that maximizes the long-term revenue given the distribution of
customers across the states.

2 METHODOLOGY
We’re interested in the LTV we can causally attribute to the ac-
quisition or retention of new/existing members. To do so, we first
outline assumptions that enable a causal estimate from observa-
tional data. Next, we set up a finite Markov chain to model the
customer lifetime in a subscription service. Finally, we illustrate
how to use the proposed Markov chain to estimate the incremental
LTV of an acquired or retained subscriber.

To start, denote 𝑉 as the remaining cumulative discounted rev-
enue for a household in state 𝑠 . More concretely, dropping the 𝑠 for
notational convenience:

𝑉 =

∞∑
𝑘=0

𝛽𝑘𝑚𝑘 · 𝑐𝑘 (2.1)

where𝑚𝑘 is an indicator equal to 1 if the household is a member 𝑘
periods in the future and 𝑐𝑘 the price likewise.

Given the notation, the question we seek to answer is: what
fraction of 𝑉 is due to the intervention of shifting a household into
a membership state?
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2.1 A Causal Interpretation
Borrowing from the potential outcomes framework [13], define
two potential LTV outcomes starting from an initial state 𝑠:𝑚 if
the household is a member in the next state and ¬𝑚 if they are
not a member in the next state. Correspondingly, 𝑉𝑚 is potential
LTV if the household is a member and 𝑉¬𝑚 is potential LTV if the
household is not a member.

The realized observation, 𝑉 , is one of these potential outcomes
depending on whether the household becomes a customer,𝑚 = 1,
or not.𝑚 = 0.

𝑉 =𝑚 ·𝑉𝑚 + (1 −𝑚) ·𝑉¬𝑚 (2.2)

Our object of interest is incremental LTV, the additional LTV
we expect to receive from the household being in a subscriber
versus a non-subscriber state or more concretely, the difference
in potential LTV outcomes. To estimate this, we average across
households and seek an estimate of the average treatment effect
where the treatment is an intervention that shifts the household
into the membership state.1

E [Δ𝑉 |𝑠] ≡ E𝑉𝑚 |𝑠 [𝑉𝑚 |𝑠] − E𝑉¬𝑚 |𝑠 [𝑉¬𝑚 |𝑠] (2.3)

Unfortunately, for each household we only observe one of the
potential outcomes. To be able to estimate incremental LTV from
data, we need to ensure the standard assumptions from causal infer-
ence hold: overlap and unconfoundedness [13]. Assuming overlap
holds (i.e ensuring that we observe transitions into the subscriber
and non-subscriber state from each initial state), unconfounded-
ness is the assumption warrants further discussion. It requires that
the potential LTV outcomes are independent with respect to the
realized membership indicator𝑚, conditional on the state 𝑠 .

(𝑉𝑚,𝑉¬𝑚) ⊥⊥𝑚 | 𝑠 (2.4)

Another way to say this is that we need enough variables in the
states to ensure that conditional independence holds. For example,
if households from a particular geo-region have higher potential
LTV as members, 𝑉𝑚 , and are more likely to join as non members,
then unconfoundedness does not hold unless geo-region is part of
the state-space.

Assuming overlap and unconfoundedness hold, we can estimate
incremental LTV from observational data, where a similar deriva-
tion can be made for expectation of the non-subscriber potential
outcome in equation (2.3).2

E𝑉𝑚 |𝑠 [𝑉𝑚 |𝑠] = E𝑉 |𝑠,𝑚=1 [𝑉 |𝑠,𝑚 = 1] (2.5)

Combining equations (2.3) and (2.5) show that incremental LTV
from state 𝑠 can be estimated as the difference in observed LTV in
the subsequent subscriber state and observed LTV in the subsequent
non-subscriber state.

E [Δ𝑉 |𝑠] = E [𝑉 |𝑠,𝑚 = 1] − E [𝑉 |𝑠,𝑚 = 0] (2.6)

1We’re explicitly quantifying the causal effect on LTV from acquiring/retaining the
member which is different from the causal effect on acquisition/retention from some
intervention. In the former, the intervention is the acquisition/retention event and in
the latter the intervention is some investment designed to acquire or retain members.
2Crucially, note that𝑉 is observed whereas𝑉𝑚 and𝑉¬𝑚 are not.

2.2 The Markov Chain Model
The primary difficulty in estimating equation (2.6) is that the sec-
ond part of the difference represents LTV of a household in a
non-subscriber state. Even for web based businesses, data on non-
subscribers is at best limited and commonly unavailable.3 To over-
come this problem, we build a Markov chain where we are able to
estimate non-subscriber LTV from limited data on non-subscriber
acquisitions. By chaining together transitions in a probabilistic
manner, we implicitly recover the distribution over the possible
paths across the state space and hence the expected LTV from a
non-subscriber state.

To begin, consider a subscription service with two different plans
(A and B), each with different prices. Subscribers pay a fee at a pre-
determined cadence (e.g. weekly or monthly) to have access to the
firm’s products or services for a billing cycle. At the end of each
billing cycle, subscribers have the option to renew, upgrade, down-
grade, or cancel their subscription. We also assume that the firm
can identify rejoiners, subscribers who have a prior subscription,
cancelled and resubscribe.

Based on their subscription status (on- or off-service), billing
cycle, and plan type, a subscriber is in one the following states:

S = {0, 𝐴1, 𝐵1, . . . , 𝐴𝑁 , 𝐵𝑁 , 𝐴−1, 𝐵−1, . . . , 𝐴−𝑀 , 𝐵−𝑀 }

where𝐴𝑖 denotes a subscriber with the firm for 𝑖 consecutive billing
cycles and currently enrolled in Plan 𝐴, 𝐴−𝑗 denotes a former sub-
scriber off-service for 𝑗 consecutive billing cycles most recently
enrolled in plan 𝐴 during her last billing period on the service.
Finally a customer is in state 0 if she hasn’t been a subscriber of
the firm in the past (never-subscriber). The states defined in S do
not overlap and every subscriber is in one of the states.4 We also
assume 𝑁 and 𝑀 are two integers which are large enough that
subscriber behaviour in terms of acquisition and retention would
stay constant, for example:

𝑝 (𝐴𝑖+1 |𝐴𝑖 ) ≈ 𝑝
(
𝐴 𝑗+1 |𝐴 𝑗

)
,∀𝑖, 𝑗 ≥ 𝑀.

Figure 1 depicts the Markov chain for the subscription service.
TheMarkov chain is characterized by an (2𝑁+2𝑀+1)×(2𝑁+2𝑀+1)
transition probability matrix, where 𝑝 (𝑠 ′ |𝑠) shows the transition
probability that a subscriber will move to state 𝑠 ′ in the next billing
cycle given that she is currently in state 𝑠 .

Given these transition probabilities, we are in a position to de-
rive both finite and infinite horizon LTV, and their incremental
equivalents.

Define 𝑉 (𝑠) as the value function at state 𝑠 , the expected dis-
counted revenue generated by a customer starting from state 𝑠

over an infinite horizon. Then value function is described by the
following recursive equation

𝑉 (𝑠) = 𝑐 (𝑠) + 𝛽 ×
∑
𝑠′

𝑝 (𝑠 ′ |𝑠) ×𝑉 (𝑠 ′) (2.7)

where 𝑐 (𝑠) is the subscription price of state 𝑠 and 𝛽 is the discount
factor.
3Obvious exceptions are advertising or tracking companies where significant engi-
neering effort is spent on tracking users across the web.
4For ease of exposition, we consider only a minimal number of states. In practice, the
state space should include all states that satisfy the Markov property and to eliminate
unobserved heterogeneity that affects the transition probabilities.
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Figure 1: Markov chain modeling a customer’s journey in a
subscription service.

Solving for 𝑉 (𝑠) is straightforward since one can rewrite (2.7)
in vector notation as

(I − 𝛽P)V = c (2.8)
where c and V are the stacked vector equivalents of 𝑐 (𝑠) and 𝑉 (𝑠)
and P is a square matrix filled with transition probabilities. Since P
is a transition matrix with transition probabilities and 𝛽 < 1, the
matrix (I − 𝛽P) has eigenvalues bounded below by 1 − 𝛽 which
guarantees (I − 𝛽P) is invertible and hence there exists a unique
and non-degenerate solution to V.

Alternatively, if one is interested in a finite horizon value func-
tion,𝑉𝑇 (𝑠) one can simply simulate the Markov chain starting from
each initial state and accumulate revenue (or subscribers) until the
terminal period.

At time 0, suppose one is interested in LTV over 𝑇 periods.
Denote the 𝑘-step ahead transition probabilities recursively as

𝑝 (𝑠 ′′ |𝑠;𝑘) = Π𝑠′𝑝 (𝑠 ′ |𝑠;𝑘 − 1)𝑝 (𝑠 ′′ |𝑠 ′; 1) ∀𝑘 > 1 (2.9)

and
𝑝 (𝑠 ′ |𝑠; 1) = 𝑝 (𝑠 ′ |𝑠) (2.10)

Given these 𝑘-step transition probabilities, the finite horizon
LTV is simply

𝑉𝑇 (𝑠) =
𝑇∑
𝑡=0

𝛽𝑡
∑
𝑠′

𝑝 (𝑠 ′ |𝑠; 𝑡)𝑐 (𝑠 ′). (2.11)

Similarly, given an initial distribution of subscribers across the
states, 𝑛0 (.), the number of subscribers at state 𝑠 at 𝑇 is

𝑛𝑇 (𝑠) =
∑
𝑠′

𝑛0 (𝑠 ′)𝑝 (𝑠 |𝑠 ′;𝑇 ). (2.12)

A direct application of this is the number of subscribers at 𝑇

𝑆𝑇 =
∑
𝑠

𝑛𝑇 (𝑠)1𝑜𝑛−𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (𝑠) . (2.13)

where 1𝑜𝑛−𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (𝑠) is an indicator variable denoting where state
𝑠 is a on-service state.

2.3 Value of Acquired or Retained Subscriber
In the previous section, we showed how to model LTV with a finite
Markov chain. The payoff in modeling LTV with a value function
is that we can decompose LTV in the service of estimating the
incremental value of an acquired or retained subscriber.

Suppose the subscription service runs a marketing campaign
aiming to acquire (or re-acquire) and retain subscribers and we can
causally attribute acquired or retained subscribers to that campaign,
what is the monetary benefit of the marketing campaign?

For the Markov chain above, there are 3 types of channels we
have to consider: new acquisitions, acquisitions of former sub-
scribers and retention of existing subscribers.5 At a high level, we
will value each of these channels similarly. First, we calculate their
forward-looking LTV at the time of the marketing campaign. This is
the revenue we expect to receive from the subscriber going forward,
accounting for churn risk and the possibility of rejoins. Crucially
however, we also calculate the revenue we expect to receive if
the subscriber had not joined/rejoined or churned. The difference
between the two is the additional revenue we expect to gain, incre-
mental LTV, due to the marketing campaign causally shifting the
subscriber from the off-service state to the on-service state.

Figure 2 depicts these three channels. More concretely, the value
of acquiring a new subscriber is:

Δ𝑉𝑎𝑐𝑞 (𝑖) ≡ 𝑉 (𝑖1) −𝑉 (0) 𝑖 ∈ {𝐴, 𝐵}

where 𝑖 denotes the plan the subscriber chooses upon acquisition.
Similarly, reacquiring a subscriber who was previously on plan

𝑗 off-service for 𝑘 periods

Δ𝑉𝑟𝑒𝑎𝑐𝑞 (𝑖, 𝑗, 𝑘) ≡ 𝑉 (𝑖1) −𝑉

(
𝑗min{−𝑀,−𝑘−1}

)
𝑖, 𝑗 ∈ {𝐴, 𝐵}, 1 ≤ 𝑘 ≤ 𝑀

where 𝑖 shows what types of plan the subscriber signs up into, 𝑗
shows the latest plan that subscriber were enrolled in her last billing
cycle, and 𝑘 shows for how many billing cycles the subscriber has
been off-service.

Finally, retaining a subscriber who chooses plan 𝑖 and was previ-
ously on plan 𝑗 with tenure 𝑘 :

Δ𝑉𝑟𝑒𝑡 (𝑖, 𝑗, 𝑘) ≡ 𝑉 (𝑖max{𝑁,𝑘+1}) −𝑉 ( 𝑗−1)

𝑖 ∈ {𝐴, 𝐵}, 1 ≤ 𝑗 ≤ 𝑀.

Intuitively, each of these channels is lower if the baseline level
of joining or rejoining is higher. In other words, there is little value
to a marketing campaign that acquired new subscribers if those
never-subscribers would have likely joined tomorrow absent the
marketing campaign. Hence using LTV alone, without subtracting
the appropriate baseline, will tend to overvalue acquisition and re-
tention and consequently, overvalue investments aiming to increase
acquisition and retention.

One important caveat is that because these estimates of incre-
mental LTV are based on static transition probabilities, they can
only be used to estimate the value of acquisition and retention
coming from interventions that have only transitory effects on
transition probabilities. For example, launches of new content or
marketing campaigns typically have effects that decay rapidly over
time and hence are good candidates for incremental LTV whereas
new product features that fundamentally alter a service are not.

5In practice, there are many other behavioral responses that occur such as changes in
engagement, account sharing, etc. These are all possible to value if the appropriate
states are included in the state-space.
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(a)

(b)

(c)

Figure 2: (a) Incremental value of acquiring a never-
subscriber as a type-A subscriber can be estimated as𝑉 (𝐴1)−
𝑉 (0) (b) Incremental value of re-acquiring a subscriber be-
ing in state 𝐴−1 as a type-B subscriber can be estimated as
𝑉 (𝐵1)−𝑉 (𝐴−2) (c) Incremental value of retaining a subscriber
being in state 𝐴1 can be estimated as 𝑉 (𝐴2) −𝑉 (𝐴−1)

2.4 Limitations
One possibility is that the underlying stochastic process may be
non-Markov: either the relevant history cannot be reduced to the
preceding state and/or we are missing states in the state space.
This prevents the causal interpretation of incremental LTV and
potentially biases estimates of the value of acquisition or retention.
For example, if higher income households retain with higher prob-
ability and we don’t observe income, the value of retention in a
given state is biased upwards since estimates of LTV for members
implicitly sub-sample wealthier households. Ideally, the state-space
would would include as many covariates needed to condition away

these hidden states but the curse of dimensionality limits a naive
approach. The two solutions we propose enable conditioning on a
high dimensional set of covariates without significantly increasing
the state space.

Similar to [10] who model a binary retention decision, one can
construct transition matrices on the original state space while con-
ditioning on a set of covariates, and in a manner that accounts
for unobserved heterogeneity. For any state, there exist a sample
of households each characterized by covariates. One can model
the outcome of households decisions at that state as a Dirichlet
distribution, where the concentration parameters of the Dirichlet
distribution depend on covariates and the current state.6 If the
state-space is of dimension 𝑑 , one estimates 𝑑 separate Dirichlet
models each modeling the transition to states within a subspace of
the full state-space. Note that since each model includes the state
as part of the input along with the covariates, we avoid estimating
a separate model for each state which would be computationally
prohibitive.

As an example, suppose that the two states are member or not,
and plan type A or B. By fitting two Dirichlet models, one for mem-
bership and another for plan choice, one can construct a transition
matrix over the original state space that is conditioned on covariates,
assuming that choices for each state are independent. Moreover, by
sampling from the Dirichlet models for a given set of covariates, one
recovers the full distribution of “personalized” transition matrices
which explicitly accounts for unobserved heterogeneity that remain
after conditioning. Hence this approach deals with the existence of
hidden states in two ways: first, conditioning away the hidden state
and secondly, characterizing the distribution of transition matrices
instead of a single point estimate based transition matrix which
accounts for any remaining unobserved heterogeneity.

An alternative direction is to collapse the potentially high dimen-
sional set of covariates into a scalar propensity score (probability
of transitioning to a member state conditional on covariates) and
to include the propensity score as a state. If the covariates are suffi-
cient to ensure unconfoundedness holds, it is sufficient to condition
on the propensity score alone as the proof in [17] holds.7 This ap-
proach summarizes the covariates with the propensity score but
other latent variable based approaches are also possible [15].

For instance, to calculate the value of acquisition at state 𝑠 , first
calculate propensity scores with a model of the probability of transi-
tioning into membership conditional on covariates. Then calculate
the value of acquisition at each state and binned propensity score,
which requires constructing transition matrices for the original
state space with the addition of the propensity score states. Finally,
integrate out the propensity scores by taking a weighted average of
those estimates across the propensity score states to get the value
of acquisition at 𝑠 . As with the previous approach, a rich set of
covariates can be used in calculating the propensity score while
limiting the expansion of the state space.

6Note that the baseline method proposed already does this, where a constant is the
only covariate, and hence every household in that state gets the same transition
probabilities.
7For continuous valued states, one should use the generalized propensity score de-
scribed in [9].
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3 APPLICATIONS
In this section, to illustrate the wide ranging applicability of the
methodology, we use our proposed methodology to answer some
common yet challenging questions that subscription services face.
In particular, we demonstrate how the methodology can be used
to forecast future subscribers, estimate the impact of price change
on business metrics and finally, to set optimal prices that trade-off
increased revenue now against increased revenue in the future via
subscriber growth.

Transition probabilities between states are the heart of the
methodology. They govern the path and distribution of subscribers
across the states and hence revenue and subscriber aggregates (see
(2.11), (2.12), (2.13)). As such, our methodology for forecasting and
estimating counterfactual outcomes relies on forecasting and esti-
mating counterfactual transition probabilities.

The advantage of narrowing the problem to transition probabili-
ties is that each state-to-state transition selects a small cohort of
subscribers, minimizing unobserved heterogeneity that may mask
the effect of the interventions. For example, the typical time series
or event based model of aggregate subscribers embeds a host of
dynamics that cloud the effect of an intervention.

3.1 Forecasting Transition Probabilities
The simplest model of transition probabilities is to assume a con-
stant trend from a number of periods before the intervention (or
announcement thereof) or forecast date. However, estimates of the
counterfactual or forecast become noisy if the impact horizon is
large. For example, a large known content launch in the future
may higher the likelihood of acquisition and hence shift the true
underlying counterfactual or forecast transition probability. Figure
3 shows scenarios under which (a) the constant model is sufficient
and (b) where a more complex model is required.

We can improve on the constant model and deal with such con-
cerns by using time series forecasting methods that incorporate
covariates. Most forecasting methods are tuned to minimize 𝑘-step
ahead forecast errors and hence optimized for the impact horizon
one is interested in [12].

For example, suppose one uses a vector autogregressive model
with covariates such as

p𝑡 (·|𝑠; 𝑡) = 𝑓𝑠′ |𝑠
(
xt, pt−1 (·|𝑠), . . . , pt−q (·|𝑠)

)
(3.14)

where𝑞 is the lag length and xt is a vector of covariates exogenous to
the price intervention. Chaining these probabilities using equations
(2.9) and (2.10) gives an estimate of the 𝑘-step ahead transition
probability, 𝑝𝑘 (𝑠 ′ |𝑠).

3.2 Subscriber Forecasting
An obvious yet impactful application of the methodology is fore-
casting market penetration. Subscriber aggregates are by definition
the result of disaggregate acquisition and churn decisions, which is
precisely what our Markov chain measures. One of the challenges
in forecasting market-wide aggregates is that classical time-series
forecasting methods often lack structure and cannot account for
natural constraints such as slowing growth due to market satu-
ration. We explicitly account for these natural constraints in a
parsimonious way by modeling customer dynamics within a closed

(a)

(b)

Figure 3: (a) Estimating counterfactual probability for a sta-
tionary transition (b) Estimating counterfactual probability
for a non-stationary transition that depends on external fac-
tors such as subscription service content offering.

system. Growth naturally slows as markets grow, as the pool of
non-subscribers shrinks.

One of the keys to forecasting accurately, is choosing a large
enough set of states to sufficiently characterize the transition prob-
abilities over the forecast horizon. For example, suppose that churn
rates fall as subscriber tenure increases. If tenure is not part of
the set of states, the model’s forecasts of growth will likely be
biased downwards in growing markets as forecasts are based on
historical transition probabilities which come from relatively low
tenure subscribers with relatively high churn rates. The advantage
of modeling transition probabilities is that even in growing markets,
there typically is enough variation in the cross-section of existing
subscribers such that forecasts that extrapolate beyond the current
market size are accurate.

However, the benefits of more states are often offset by increased
sparsity in the data. Broadly speaking, we propose two solutions.

First, we can use dimension reduction techniques that group
states together that have similar transition probabilities and are
nearby logically (e.g binning time-based data). Techniques also exist
that are specific to Markov chains that cluster states with similar
empirical distributions of transition paths [23].
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Figure 4: Simulated transition probabilities and number of
subscribers (normalized by market size) for a streaming ser-
vice over time

Another approach is to explicitly account for uncertainty in the
transition matrices.8 For example, we may observe only a small
number of transitions out of a particular initial state which we
are not confident of. Instead of using the point estimate, we can
think of modeling the distribution of those transition probabili-
ties themselves. For example, the transition probabilities out of an
initial state all need to sum to 1 so we can model the distribution
of transition probabilities as a Dirichlet distribution, D(𝛼). The
concentration parameters, 𝛼 , dictate how sharp the distribution is
around the observed fractions and hence we can set each of them
to the observed number of transitions. By repeating this for all the
states, we have a distribution of transition matrices from which we
can sample from.

Given a state space and historical transition matrices, we can
use the techniques described in Section 3.1 to forecast transition
probabilities. From there, forecasting aggregates at forecast horizon
𝑇 is a straight-forward application of equation (2.13).

3.2.1 Example: Simulated Data. To demonstrate the advantages of
our Markov chain closed system approach, we compare it against
a baseline model which is estimated on time series aggregates.
Consider an example with six states: never-subscriber, previous-
subscriber, current-subscriber where each subscriber state can be
either low or high income. We simulate data based on a random
transition matrix across those states to generate time series data,
shown in Figure 4, where low income households probability of
transitioning into a member state is lower than high income house-
holds. Note the randomness in the time series which comes from
the random nature of a Markov chain and slowing acquisition prob-
abilities over time as market share grows.

We build three models, each forecasting the future number of
subscribers at some terminal date 𝑇 . A baseline ARIMA model
8This is similar to [10] who estimate the parameters of a Beta distribution, where the
outcome is a distribution over churn probabilities in the context of LTV models.

Figure 5: Absolute percentage error of the baseline and the
full-state and hidden-state Markov chain based models over
time.

trained on market penetration directly, second, a set of ARIMA
models that forecast transition probabilities for the full set of states
and subsequently predict top-line market penetration based on
those forecast transition probabilities using equation (2.13) and
finally, a set of ARIMA models that forecast transition probabilities
treating income as a unknown state. This last model mimics the
scenario whereby a hidden unobserved state is part of the stochastic
process. For each set of models, we choose hyperparameters such
as lag length of the AR and MA components, to minimize out-of-
sample error.

Figure 5 shows the absolute percent error of each model over
time, where forecasts at 𝑡 only use data before 𝑡 . The Markov chain
based approach with the knowledge of the relevant state-space has
relatively low error over a long horizon, even as market penetration
grows from 0 to around 70 percent. On the other hand, the forecast
errors of the baseline model are particularly high when market
penetration is rapidly changing early on, precisely because it is
unable to predict the slowdown in acquisition that comes from a re-
duced pool of non-subscribers. This result is consistent with results
from the forecasting literature which show that forecasts made in
non-stationary environments are difficult for models that implicitly
rely on stationary data [5]. As growth slows and dynamics move
closer to the stationary distribution, the baseline model eventually
has lower error than the full-state Markov approach. As expected,
the Markov based approach’s main advantage is forecasting over
longer horizons.

However, Figure 5 also shows that the existence of hidden states
increase forecasting errors of the Markov based approach. Without
knowledge of the relevant state-space, forecast errors are consis-
tently higher than a Markov based approach incorporating the full
set of states. Moreover, the period during which the Markov based
model is better than the naive ARIMA model is shorter. In other
words, the Markov-based approach’s benefit of understanding long-
run dynamics can be offset by errors induced by unobserved hidden
states, as suggested in Section 2.4. Although not depicted, the size
of the errors induced by the hidden state(s) depend on the extent
to which transition probabilities for the state one cares about, in
this case membership status, depend on the hidden state.
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3.3 Pricing Application
In a subscription-based service, the two broad levers available to
increase revenue are prices increases and/or subscriber growth.
Focusing on pricing, prices have to be set optimally to balance
short term first-order revenue changes against longer term effects
on revenue via subscriber dynamics. Moreover, price elasticities
evolve over the tenure of a subscriber. For example, longer tenure
or higher engagement subscribers may for instance, have lower
price elasticities. Consequently, the effect of a price change depends
on the distribution of subscribers across states, which in turn gov-
erns the distribution of price elasticities. Therefore setting prices
optimally requires accurate estimates of price elasticities.

Generally speaking, it is difficult to estimate price elasticities via
experimentation at subscription businesses as the limited number
of plans and repeated nature of the subscriptions means prices
are highly visible making causal inference difficult due to SUTVA
violations. Alternatively, we use observational data and the Markov
chain in section 2.2 to estimate the incremental effect of price
changes on aggregate revenue and subscriber growth, as well as
more disaggregate cohorts of subscribers.

Assume one is interested in the impact of a price intervention
after 𝑘 periods. Since we already have realized revenue and sub-
scriber figures, all we need to estimate the impact is an estimate of
revenue and subscribers under the counterfactual where prices did
not change.

Section 3.1 describes how we can construct counterfactual tran-
sition probabilities, using a model trained on data before the price
intervention and applied post-intervention using covariates that
are exogenous to the intervention.

With these, the counterfactual discounted revenue for a cohort
described by states 𝑠 ∈ Ω over the 𝑘 periods is∑

𝑠∈Ω
𝑛0 (𝑠)𝑉𝑘 (𝑠) =

𝑘∑
𝑡=0

∑
𝑠∈Ω

𝑛0 (𝑠)𝛽𝑡
∑
𝑠′

𝑝𝑡 (𝑠 ′ |𝑠)𝑐 (𝑠 ′) .

Again, counterfactual subscriber estimates are similar

𝑆𝑘 (Ω) =
∑
𝑠∈Ω

𝑛0 (𝑠)
∑
𝑠′

𝑝𝑘 (𝑠 ′ |𝑠)1𝑜𝑛−𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (𝑠′) .

3.4 Optimal Policies
Implicit in the previous section was a method for obtaining the
response of transition probabilities to price interventions. These
“price elasticities” show the complexity of responses to price
changes, examples which include increased churn, decreased acqui-
sition, plan changes etc. With enough observed price elasticities, it
is possible to model transition probabilities as a function of prices.9

In other words, going from estimates of the price elasticity, 𝜕𝑑𝑝 ( · |𝑠)𝜕c ,
and observations on baseline transition probabilities, 𝑝 (· | 𝑠), to a
model of transition probabilities as a function of prices 𝑝 (· | 𝑠; c).

Let 𝑛 ∈ R |𝑆 |+ denote the distribution of households across the
states (i.e 𝑛′1 = 𝑛 where 𝑛 is the total number of households).
Having a model of transition probabilities is powerful and enable
one to write the value function, the optimal discounted revenue

9Doing so is beyond the scope of this paper but the key is overcoming sparsity with
sensible assumptions that incorporate domain expertise. For example, prices beyond
the support of data leading to sensible changes in transition probabilities.

given an initial distribution 𝑛 across the states, by the following
recursive function:

𝑉 ∗ (𝑛) = max
c≥0

𝑛′c + 𝛽
∑
𝑛′

𝑉 ∗ (𝑛′)𝑝 (𝑛′ |𝑛; 𝑐) (3.15)

Note that prices arewritten as state-contingent prices but in practice
the dimension of prices is much smaller (e.g the number of plans
available). As an approximation, assume 𝑛 is large enough that the
transition to next period’s distribution 𝑛′ is certain. In that case,
we can write the value function as

𝑉 ∗ (𝑛) = max
c≥0

𝑛′c + 𝛽𝑉 ∗ (P (c)𝑛) (3.16)

where P(c) is the transition matrix as a function of prices 𝑐 where
the 𝑖, 𝑗 element is the probability of transitioning from 𝑗 to 𝑖 .

With some assumptions, Blackwell’s conditions trivially apply
here so equation (3.16) describes a contraction and hence a unique
fixed point exists and can be found by computational methods. In
particular, care needs to be taken such that prices cannot be raised
indefinitely so discounted revenue is unbounded. For example, the
space of functions is bounded above if there is a maximum price
𝑐 such that ∀𝑐 >= 𝑐 , P (c) is such that all members churn to the
non-member state and all non-members remain non-members. A
lower bound is guaranteed from the positive restriction on prices.

Given a fixed point of (3.16), the optimal price at 𝑛 is simply the
policy function

𝑐∗ (𝑛) = arg max
c≥0

𝑛′c + 𝛽𝑉 ∗ (P (c)𝑛) (3.17)

4 CONCLUSION
While the existing literature on customer lifetime value (LTV) is
rich, we demonstrated that incremental LTV is the correct quantity
to estimate to value acquired or retained subscribers whereas LTV
tends to overvalue acquired or retained subscribers.

This paper establishes a methodology to estimate incremental
LTV and as such, the monetary value of an acquired or retained
subscriber. We leverage a finite state Markov chain to model the on
and off-service behaviour of subscribers in a closed system. Unlike
LTV models, subscribers do not disappear at churn and instead
have positive forward looking LTV as they may rejoin in the future.
Hence we can compare the forward looking LTV when a subscriber
is acquired or retained, against that if they had remained a non-
subscriber or churned. The difference represents the additional
revenue the business can expect to receive with the customer in a
subscriber state versus as non-subscribers. This allows for monetary
valuation for a host of investments that are common in subscription
businesses, yet typically measured in units of subscribers.

Finally, we demonstrated additional applications of the model.
We used the Markov chain methodology to answer three common
yet challenging problems that subscription services face, (i) fore-
casting the future number of subscribers, (ii) estimating the impact
of subscription price increase on revenue and subscription growth,
and (iii) optimizing policies, such as price discounting, that maxi-
mize expected lifetime revenue.
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